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On the Expansion of the Single Eigenvalue Probability 
Density Function 
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The probability density function of the single eigenvalue is expanded in terms of 
the reciprocal of the dimension of the matrix using Bessel functons. It is shown 
that for the new matrix ensembles this expansion gives Wigner 's semicircle 
centered at the mean  value of the matrix elements plus terms of the order of 
N -  1, where N is the dimension of the matrix. 
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1. INTRODUCTION 

Matrix ensembles have been successfully employed in the past to study the 
statistical properties (1) of compound-nucleus level widths and level densi- 
ties. Since compound-nucleus levels lie much higher in energy, it was 
reasonable to assume that the off-diagonal elements of the Hamiltonian 
will have almost equal probability of being positive and negative. Thus in 
these ensembles the mean value of the off-diagonal elements was always 
taken to be zero. Later, (2) in an attempt to understand the average 
properties of complex nuclei using such ensembles, it was found that for a 
satisfactory description of these complex nuclei one has to modify these 
ensembles by assuming that the off-diagonal elements have nonzero mean. 
The nonzero-mean matrix ensembles are also finding applications in other 
areas (s) of many-body physics. Since in all these studies the dimension N of 
the matrix is taken to be large, one is interested in expanding the various 
distributions in terms of the inverse of the dimension of the matrix. An 
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important quantity which is also needed in the study of average cross 
sections is the probability density function of the single eigenvalue for large 
N. The purpose of the present work is to look into the problem of the 
expansion of various probability density functions in terms of N -  l 

To bring out the essential points of the present way of looking at this 
problem, we shall first derive the distribution of a component of an 
N-dimensional unit vector in Section 2 for large N. In Section 3 we shall 
consider the probability density function when the off-diagonal elements 
have zero mean. The case in which the mean value of the matrix elements is 
nonzero will be discussed in Section 4. 

2. DISTRIBUTION OF A COMPONENT OF AN N-DIMENSIONAL 
VECTOR 

Let us consider an N-dimensional unit vector having the components 
x l ,  x 2 . . . .  , x s .  The probability density function of a single component, say 
x 1, can then be written as 

P ( x ) = K f 3 ( x - x , ) 3  • x  2 -  1 dx i (1) 
i=l i 

where K is the normalization constant. In all the subsequent equations K 
will stand for the appropriate normalization constant. Before we derive the 
expansion of P ( x )  in terms of N -  1, we would like to remark that exact 
distribution P ( x )  can be easily obtained using N-dimensional polar coordi- 
nates. (4) Such exact distributions cannot always be derived for other 
quantities, like the single eigenvalue distribution when the mean value of 
the off-diagonal elements is nonzero. It is for this reason that we have 
chosen this problem so that we can first check the validity of the approxi- 
mation by comparing it with the exact results and then use it later for other, 
more complicated distributions. 

Writing the Fourier transform of the first delta function in expression 
(1), we get 

N 
P(x)= KfexpI-ik(x- x,)]~(Xx ~ - 1) II dxidk (2) 

i=1 
where K now denotes the new constant. 

Expanding e x p ( i k X l )  and keeping the fir'st three nonvanishing terms, 
we get 

P(x)= K;exp(-ikx){l- l k2x~ + l k 4 x 4 . . .  } ( ~ ( E x  2 -  l)~f dxidk 

(3) 
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Carrying out the integrations over x i gives 

P(x )=  e x p ( - i k x )  1 -  ~ + 8N(N + 2) ..  dk (4) 

Introducing the new random variable t = N~/2x and making a slight 
change in the integral in expression (4), we arrive at the following probabil- 
ity density function of the variable t for large values of N: 

P ( t ) = K f d k e x p ( - i k t ) [ 1 - 1 k Z + ~ k 4 ( 1 - 2 / N )  . . .  ] (5) 

We see from expression (5) that the series in the square brackets is a sum of 
a dominant part represented by (1 - �89 k 2 + ~ k 4 �9 �9 �9 ) and small terms of 
the order of 1IN and therefore provides the desired expansion of the 
variable t for large values of N. Rewriting expression (5) in the form 

P ( t ) =  K f d k e x p ( - i k t -  � 8 9  4 . . .  ] (6) 

and carrying out the integration over k, we get the following expression for 
P(t) for large N: 

P(t) = K e x p ( -  �89 + (3 /2N)t  2 -  (1/4U)t  4 . . .  ] (7) 

Before we go to the next section let us note the following: (i) By expanding 
the exact distribution 

Pex(t) = K(1 - t2 /N)  (N-3)/2 (8) 

we find that our procedure has given the correct expansion in terms of 
N - 1. (ii) The exact range of the variable t is - N 1/2 < t < N 1/2 while for 
the asymptotic form (7) it is - oo < t < oo. (iii) It is obvious that expression 
(7) reproduces the second and fourth moments of t up to order N -  1 
correctly, as it should. 

3, MATRIX ENSEMBLES HAVING ZERO MEAN 

Let us consider a real-symmetric matrix ensemble in which each 
matrix element is distributed according to ~ 

P(  H,j ) = (27rJ 2 /N  ) - ' / 2  e x p ( -  Nnif./2J 2) (9) 

This is a slightly different distribution from the one used in earlier stud- 
ies,(1) which gives rise to a Wishart distribution for the eigenvalues. For the 
Wishart distribution Wigner had derived the dominant part of the single 
eigenvalue distribution using methods of statistical mechanics and the 
method of moments/s) An exact expression for the probability density 
function was later derived by Mehta and Gaudin (6) by carrying out the 



416 Uliah 

exact integrations. Such exact derivation will be extremely difficult when 
each element/-/,7 has a finite mean, since even the joint distribution of the 
eigenvalues can only be written as a Wishart distribution multiplied by a 
factor which is an integral over a unit vector(7); however, the method of 
Section 2 provides a fairly straightforward way to find the expansion of the 
probability density function even for this case. 

The probability density function P ( E )  can be written as 

P(E)=/~f Tr[8(E- ~/)]e(/~)dH (10) 
where Tr denotes the trace and P ( H )  is the product of probabilities of 
1 N ( N  + 1) elements given by expression (9) and K again denotes the 
appropriate normalization constant. Since all the matrix elements of H are 
treated alike, expression (I0) can be rewritten as 

e(e)= Kf [~(e- n)],,e(tJ)dH (11) 
where [ - -  �9 ]11 denotes the matrix element of 8 ( E -  H) lying in the first 
row and first column. As in Section 2, we write the Fourier transform of the 
&function and expand the exponential [exp ikH]l 1 to get 

P ( E )  = Kfakexp(-ikE)(1- ~., k=[,=]11 + ~,. k4[ H~],@(H) aH 
(12) 

Carrying out the integrations over d H  and retaining terms of the order of 
N -  1, we find 

P ( E )  = K d k e x p ( - i k E )  1 - -~ + - ~  - I ' i2-N"-  j 

(13) 
As in Section 2, the probability density function of the single eigenvalue E 
is a sum of the dominant part arising from the terms (1 - �89 k2J 2 �9 �9 �9 ) and 
the part which goes like N-1 for large N. Using Bessel functions (8) and 
making a slight change in the integral in expression (13), we can write 

p ( E )  = K f _ L d t t - , e x p (  - irE ] (14) 

The integral over t can be written (8) in terms of Chebyshev polynomials, 
which finally gives the following expression for P(E): 

[ ~1( 6E2J2 2E4)  " ' "  ] j 4  (15) P ( E )  = r [ 4 J  2 -  E2] '/2 1 + 

}El < 2J and P ( E )  being zero outside this interval. The first part of the 
probability density function is just Wigner's semicircle, (5) as it should be, 
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since it is the large number of off-diagonal elements that determines this 
part. The second part of expression (15) goes as N -  1 and it can be easily 
checked that it gives correct second- and fourth-order moments of E up to 
N -1. 

4. MATRIX ENSEMBLES HAVING NONZERO MEAN 

We would next like to consider matrix ensembles in which each H O. has 
a nonzero mean. O) Expression (9) is now replaced by 

p(HO.)=(_~)_l/2exp[_N. ~_5 (H,j _ _~_)M0 21 (16) 

The probability density function is again given by expression (10) or (11) 
with P(H) being the product of probabilities of �89 N(N + 1) elements given 
by expression (16). Since the diagonal elements of H have now a mean 
value Mo/N, we rewrite expression (11) as 

Again writing the Fourier transform of the &function and expanding 
[exp ik(H- M0/N)]lt ,  we get 

- 2-]- H -  ---~- "~-.t ~ ~ 11--  H - -  + H -  -{- �9 �9 �9 
l l  i i  

(18) 

The rest of the derivation is almost the same as described in the last section. 
The second term in the curly brackets of expression (18) contributes zero. 
The third and fifth terms give rise to the same dominant terms as in 
expression (13). The N - 1 terms which arise from the third, fourth, and fifth 
terms now involve the Bessel functions Ja, -/4, and Js. The final expression 
which we obtain for P(E) is given by 

i j, i 
-~-)  + - ~ )  + ' ' -  (19) 
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where a, t3, 3', 6 are given by 

a = - ( 2 / N j 4 ) ( M  3 + 3Mo J2) 

fl = ( l / U j 6 ) ( 6 J  4 -  2MZJ 2 -  3M 4) 

y = (1 /Nj6) (M3o  + 3Mo J2) 

8 = - ( 1 / N J S ) ( 2 J  4 -  M~J 2 -  M 4) 

(20a) 

(20b) 

(20c) 

(20d) 
Therefore the probability density function when each element of H/j has a 
mean value M o / N  is given by Wigner s semicircle centered at M o / N  plus 
terms of the order N -  l for large N. 

5. CONCLUSIONS 

The probability density function for various quantities is separated 
into a dominant part  and a small part  which goes as N -  1 using appropriate 
expansions in terms of Hermite polynomials with Gaussian weight factor 
and Bessel functions. Even though we have discussed the distribution of the 
single component  of a unit vector and the single eigenvalue the method can 
also be applied to find other distributions, like the joint distribution of two 
components of an N-dimensional unit vector. Such distributions are needed 
in the study of correlations of the widths of the compound-nucleus levels. 
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